Aggregation behavior and surface tension lowering ability of anionic surfactants having highly-methylated tails

<u>Masanobu Sagisaka</u>^{1*}, Takumi Endo¹, Tsuyoshi Narumi¹, Kodai Sato¹, Craig James¹, Atsushi Yoshizawa¹, Frédéric Guittard², Julian Eastoe³

¹Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan ²Univ. Nice Sophia-Antipolis, CNRS, Equipe Surfaces et Interfaces, Nice, France ³School of Chemistry, University of Bristol, Bristol, U.K.

* e-mail address of the presenting author: sagisaka@hirosaki-u.ac.jp

A fluorinated surfactant can reduce aqueous surface tension effectively. However, it is quite expensive and environmentally burden compared with a hydrocarbon one. Previous studies [1] have reported that double branched-nonyl-tail surfactants are able to reduce aqueous surface tension to ~24 mN/m, even at low hydrocarbon tail layer densities of 0.47-0.53 g/cm³. Based on the air/liquid interfacial properties of liquid n-alkanes (e.g. 22.4 mN/m at a mass density of 0.71 g/cm³ for n-nonane at 25 °C), if the layer density of this double branched-nonyl-tail layer can be increased to ~0.70 g/cm³, comparable to that seen in the analogue liquid alkane, the surface tension could approach as low as ~22 mN/m.

Aiming to develop hydrocarbon surfactants able to lower aqueous surface tension as effective as a fluorinated surfactant does, this study synthesized surfactants having highly methylated tails, namely, double, and triple 3,3-dimethylbutyl tails (namely, ROCO-CH₂-CH(-SO₃Na)-COOR four double tail surfactant di-BC₄ESS, and ROCO-CH₂-C(-SO₃Na)(-COOR)-CH₂-COOR for triple tail surfactant tri-BC₄ETS, where R is 3,3-dimethylbutyl tail), and examined their surface tension lowering ability in water and aggregation behavior in nonpolar solvents (*n*-hexane, *n*-heptane and supercritical CO₂) of these surfactants.

Critical micelle concentration (cmc), surface tension at cmc (γ_{cmc}), minimum effective area per surfactant molecule (A_{min}) of the surfactants were obtained from relationship between surface tension and surfactant concentration in water at 35 °C. The cmc, γ_{cmc} and A_{min} were 3.9 × 10⁻² M, 26.0 mN/m and 150 Å² for di-BC₄ESS and 4.6 × 10⁻³ M, 24.6 mN/m and 183 Å² for tri-BC₄ETS, respectively.

To investigate effects of various salts on the surface tension lowering ability, sodium, magnesium or calcium chloride was added to the aqueous surfactant solution at twice the critical micelle concentration, and the surface tension was measured as a function of salt concentration. Addition of salts in the surfactant solutions decreased surface tension until the certain salt concentrations. At its lowest, the aqueous surface tensions reached 22.5 mN/m and 23.2 mN/m for the CaCl/di-BC₄ESS and CaCl/tri-BC₄ETS systems, respectively. These values are very close to the surface tension of liquid *n*-nonane, and γ_{cmc} of a short fluorocarbon-tail surfactant. The structure-surface tension lowering ability correlation suggests that the order parameter, layer density and tail length are key in the design of a hydrocarbon surfactant with fluorinated surfactant-like low surface energy.

Nanostructures of those surfactants in the nonpolar solvents were examined by small angle neutron scattering apparatus (LOQ, Rutherford Appleton laboratory, UK) at 25 °C. Tri-BC₄ETS was found to yield transparent single phases with water/n-heptane and water/n-hexane systems even with water-to-surfactant molar ratios (W_0) higher than 10, but di-BC4ESS could not so. The SASN measurements and data analysis suggested aqueous cores of the 50mM tri-BC4ETS/D₂O/*n*-heptane microemulsion with W_0 = 30 to be spherical with the radius of ~20 Å. On the other hand, in water/supercritical CO₂ mixtures at 45 °C, 50 mM tri-BC₄ETS formed a transparent single phase with W_0 = 3, but it turned into a turbid phase with an increase in W_0 . SANS profile of the turbid phase with W_0 =5 showed a Bragg peak ascribed to the layer spacing of 27 Å. Then the turbid phase was identified as a liquid crystal phase like a lamellar one but not a simple W/CO₂ macroemulsion phase.

 M. Sagisaka, T. Narumi, M. Niwase, S. Narita, A. Ohata, C. James, A. Yoshizawa, E. T. Givenchy, F. Guittard, S. Alexander and J. Eastoe, *Langmuir*, 2014, **30**, 6057.