## Dynamics of concentrated core-shell nanoparticle suspensions from confocal differential dynamic microscopy

## Siddarth A. Vasudevan<sup>\*</sup>, Lucio Isa

## Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zürich, Switzerland \*siddarth.vasudevan@mat.ethz.ch

Recently, there has been a surge of interest in understanding the dynamical and structural properties of core-shell nanoparticle (CSNp) suspensions due to their importance in a number of applications, including emulsion stabilization, delivery and sensing. In contrast to their counterpart – hard-sphere suspensions – CSNp suspensions have been shown to exhibit fundamentally different hydrodynamic interactions, due both to solvent permeability into the shell and the fuzzy structure of the particle itself [1, 2]. Most of the experimental work on the equilibrium dynamic properties of CSNp suspensions has so far been on particles with a soft core and a soft shell (microgels) [1]. Here, we investigate the dynamics of CSNps dispersed in water with a hard silica core surrounded by a soft shell composed of poly(Nisopropylacrylamide) (PNiPAM) [3]. Their dynamics is probed by confocal differential dynamic microscopy (ConDDM), a technique that has been recently shown to yield information similar to that of dynamic light scattering, but applicable to dense and opaque colloidal suspensions [4]. We found that the behaviour of the intermediate scattering function (ISF) obtained from DDM analysis of concentrated core-shell nanoparticle suspensions is of the form:  $F(q, t) = A(q)[1 - \exp\left(-\left(\frac{t}{\tau(q)}\right)^{\beta(q)}\right)] + B(q)$ . For the case of a dilute suspension, the stretching exponent  $\beta$  is found to have a constant value close to 1, as expected for simple Brownian diffusion [5]. Conversely, for higher volume fraction ( $\phi$ ) suspensions, we found that  $\beta < 1$  and is not independent of q. The characteristic relaxation time  $\tau(q)$  at large  $\phi$  deviates from the dilute  $1/Dq^2$  behaviour, indicating structural effects that couple to particle dynamics.



**Figure 1**: **A)** ISF vs time for  $\phi = 0.41$  CSNp suspension at different wave vector q. **B)** Relaxation time  $\tau$  vs q behavior for different volume fractions  $\phi$ .

- 1. T. Eckert and W. Richtering, J. Chem. Phys., 2008, 129, 124902
- 2. G. Petekidis, J. Gapinski, P. Seymour, J. S. van Duijneveldt et al., Phys. Rev. E., 2004, 69, 042401
- 3. A. Rauh, M. Rey, L. Barbera, M. Zanini, M. Karg and L. Isa, , Submitted to Soft Matter Journal
- 4. P. J. Lu, F. Giavazzi, T. E. Angelini, E. Zaccarelli et al., Phys. Rev. Lett., 2012, 108, 218103
- 5. R. Cerbino and V. Trappe, Phys. Rev. Lett., 2008, 100, 188102