Nano-composites of DNA-wrapped Carbon Nanotubes and TiO$_2$ or SiO$_2$.

Martina Romio*, Camillo La Mesa

Dept. Chemistry, Sapienza University of Rome, Rome, Italy.

*martina.romio@icloud.com

Carbon nanotubes, CNTs, are effectively stabilized by wrapping single strand DNA, ss-DNA, on their surface. The resulting adducts are kinetically and thermodynamically stable. [1] Such entities build up nano-hybrids with SiO$_2$ or TiO$_2$ nano-particles, NPs, in presence of surfactant. The conditions leading to a significant adsorption onto such adducts were investigated in some detail. These include optimizing the concentration of the adducts, of NPs, and of the cationic surfactant (CTAB), used as an adjuvant.[2,3] Depending on the working conditions, it is possible getting homogeneously organized hybrids, mostly in case of TiO$_2$. Characterization by DLS, electro-phoretic mobility, SEM and AFM clarified some details of the surfactant-assisted association between ss-DNA/CNT and SiO$_2$, or TiO$_2$. Their clustering on the adducts ends in the formation of hybrids, and is controlled by electrostatic interactions among two such components. Surface coverage of adducts by TiO$_2$ is significant and homogeneous. In case of SiO$_2$ the results are erratic, because of the persisting negative charge on such CTAB-covered particles. These hybrids are useful for possible application in heterogeneous catalysis.

![Figure 1 TiO$_2$ clustering onto DNA-wrapped CNTs. The red bar indicates a 300 nm size.](image)

Acknowledgements The financial support of Sapienza University is acknowledged.