Interactions of an alkylated antimicrobial peptide, BP100C$_{16}$, with Phospholipid Vesicles

I.M. Cuccovia1, G.P.B. Carretero1, M.A. Rodrigues2, S. Kiyota3, R.K. Salinas1, S. Schreier1, M.P. Bemquerer2, G.K.V. Saraiva1

1 Departamento de Bioquímica, Instituto de Química, USP, São Paulo, SP, Brazil
2 Empresa Brasileira de Pesquisa Agropecuária, Embrapa, Brasília, DF, Brazil; 3 Instituto Biológico, São Paulo, SP, Brazil

Antimicrobial peptides are antimicrobial agents (AMPs) with potential to be used as a therapeutic alternative to the growing antibiotic resistance of microorganisms [1]. BP100, KKLFFKILKYL-NH$_2$, is an AMP hybrid of Cecropin and Melittin. BP100 has high activity against bacteria, low hemolytic effect and high selectivity for negatively charged membranes, characteristic of bacterial membranes [2]. To obtain an analog with a lower minimum inhibitory concentration, MIC, and greater therapeutic potential we synthesized an alkylated BP100 derivative with a hexadecyl alkyl chain, BP100C$_{16}$, C$_{16}$H$_{33}$-AKKLFKKILKYLA-NH$_2$. Here we describe the interactions of BP100C$_{16}$ with large unilamellar vesicles, LUV, prepared by extrusion, with pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and mixtures of and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). LUV leakage by BP100C$_{16}$ was determined using 4,5-carboxyfluoresceine as an internal probe. BP100C$_{16}$ structure and its interaction with LUV were analyzed by CD, NMR, electrophoretic mobility, DLS and optical microscopy with giant vesicles, GUVs. BP100C$_{16}$ increased the permeability of LUV of POPC and different POPC:POPG mixtures. BP100C$_{16}$ was a random coil in water and its structure remained unchanged in the presence of POPC LUV. With PC:PG LUV, BP100C$_{16}$ exhibited a α-helix structure. BP100C$_{16}$ aggregated LUV of POPC:POPG 1:1, seen with GUVs, leak the LUV internal content, increased the vesicles hydrodynamic diameter and changed its electrophoretic mobility. We have shown that BP100C$_{16}$ interacts with vesicles through hydrophobic interactions with the alkyl chain and that the peptidic α-helix structure is dependent upon the presence of negatively charged phospholipids.

Acknowledgements This work received financial support from: CNPq, FAPESP (2013/08166-5), INCT-FCx and NAP-FCx.
