Evaporation of nanosuspension droplets

<u>E. Guzmán^{1*}</u>R.G. Rubio^{1,2}, L. Perrin¹, A. Pajor-Swierzy³, S. Magdassi³, F. Ortega¹

¹Department of Physical Chemistry, Complutense University, Madrid, Spain ²Pluridisciplinary Institute, Complutense University, Madrid, Spain ³Cassali Institute, The Hebrew University of Jerusalem, Israel

*eduardogs@quim.ucm.es

Spreading and evaporation of nanoparticle suspensions plays a very important role in technologies such as ink-jet printing. These phenomena are affected by the deposition of nanoparticles on the solid, the so-called coffee-ring effect, and by the adsorption of the particles at the liquid/vapor interface.

In this work we have studied the evaporation of aqueous suspensions of slightly hydrophobic polystyrene latex nanoparticles (PS-NP), and of hydrophobized silver nanoparticles (Ag-NP). We have used four different solid substrates: Teflon[®], PET, PEN and glass, the first three being hydrophobic and the last one hydrophilic. For the sake of comparison we compare the results with the behaviour of solutions of a superspreader and of the suspensions of silica nanoparticles previously reported. We have also studied the Ag-NP suspensions after the addition of a surface active co-solvent. The systems under study cover a broad range of behaviors: silica nanoparticles do not adsorb at the L/V nor at the S/L interfaces; PS-NP slightly adsorb at the L/V but not at the S/L, and Ag-NP and also the superspreader strongly adsorb at both interfaces.

The experimental results have been compared with the predictions of a recent theory proposed by Semenov et al. for pure fluids [1]. Surprisingly the agreement for the first stage of the evaporation process is very good despite being suspensions of particles, surfactant solutions or mixtures of nanoparticles and a surfactant. The same behaviour has been found irrespective of their adsorption at any of the two interfaces.

Acknowledgements We are grateful for the financial support of COST MP1106, of CoWet ITN (E.U.), and of MINECO through grant FIS2014-62005-EXP.

[1] S. Semenov et al., *Langmuir*, 2013, **29**, 10028.