Y$^{3+}$ embedded in polymeric nanoparticles: morphology, dimension and stability of colloidal system

G. Testa1*, A. Cartoni1,2, L. Fontana1, I. Venditti1, R. Faccini4, C. Mancini Terracciano3,4, E. Solfaroli Camillocci3,4, S. Morganti4, A. Giordano5, T. Scotognella5, D. Rotili6, A. Mai6, V. Dini7, I. Fratoddi1

1 Department of Chemistry, Sapienza University, Rome, Italy
2 CNR-ISI, Rome, Italy
3 Department of Physics, Sapienza University, Rome, Italy
4 INFN, Rome, Italy
5 Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
6 Department of Chemistry and Technologies of Drugs, Sapienza University, Rome, Italy
7 Health and Technology Department, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy

* giovanna.testa@uniroma1.it

Radiolabeled nanoparticles are promising tools in cancer diagnosis and therapy[1]. Moreover, yttrium-90 (90Y) is a good candidate as suitable β - emitting radioisotope for a new approach to radio-guided surgery (RGS) proposed by some researchers of our group[2]. In this work, we developed new composite nanoparticles, based on polymethylmethacrylate (PMMA), and poly(methylmethacrylate-co-acrylic acid), P(MMA-AA), embedded with yttrium ion (89Y$^{3+}$), as a first step for the development of 90Y$^{3+}$ based nanocomposites. The composite nanoparticles were synthesized by emulsion polymerization technique in the presence of KPS as radical initiator, using different MMA/AA molar ratio in the range 1-20%, and different MMA/Y$^{3+}$ molar ratios, in the range 1-20%. Yttrium doped polymeric nanoparticles were characterized by means of FTIR spectroscopy, DLS and Z-potential measurements and SEM-EDX technique[3,4,5]. The Y$^{3+}$ influence on morphology and dimension of composite nanoparticles was investigated, and monodispersed nanospheres with diameters above 80-150 nm were obtained. The composite material was studied by means of DLS and Z-potential technique and the colloids stability in water solution during 2 weeks, at different temperature (25°C and 37°C), were confirmed. Polymeric nanoparticles (diameter above 130 nm) embedded with 89Y$^{3+}$.

Acknowledgements The authors gratefully acknowledge the Sapienza University of Rome, Ateneo Sapienza 2015/C26A15H5J9 and 2015/C26A15LRMA projects for financial support.