Single microgels in core/shell equilibrium: A novel method for limited volume studies

Claes Jidheden\(^1\)\(^*\) and Per Hansson\(^1\)

\(^1\)Department of Pharmacy, Uppsala University, Uppsala, Sweden

\(^*\)claes.jidheden@farmaci.uu.se

We have developed a method for introducing limited amounts of surfactant and/or protein in single microgels held in a small aqueous volume. This makes investigating core/shell formations in equilibrium possible in a way not previously explored. Dodecyltrimethylammoniumbromide (DTAB) and cytochrome c has been used with results in line with theoretical predictions and core/shell formations with cytochrome c with Cetyltrimethylammoniumbromide (CTAB) has been achieved. The simplicity of the method makes experiments quick and opens up for studying expensive or hard-to-obtain substances due to the small amounts of material required.

\textbf{Figure 1.} DTAB with Rhodamin B fluorescence marker absorbed into a single microgel displaying a stable core/shell formation after 24 hours.

\textbf{Figure 2.} Cytochrome c and CTAB with Rhodamin B fluorescence marker absorbed into a single microgel displaying a stable core/shell formation after 3.5 hours with CTAB in the shell encapsulating the core with cytochrome c.

\textbf{Acknowledgements}

This work was financially supported by the Swedish Research Council.