Conducting inks: extended polypyrrole nanostructured colloids

Patrycja Bober^{1*}, Yu Li^{1,2}, Miroslava Trchová¹, Jaroslav Stejskal¹

¹Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic, 162 06 Prague 6, Czech Republic; ² Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

*bober@imc.cas.cz

Polypyrrole (PPy) [1,2] is one of the most known conducting polymers. PPy has interesting properties, such as biocompatibility and stability under *in-vivo* conditions, reversible doping and redox properties. Globular polypyrrole colloids are produced by the oxidation of pyrrole in the presence of suitable water-soluble polymers, e.g., poly(*N*-vinylpyrrolidone) [3]. When methyl orange is introduced to the polymerization mixture, as the structure-guiding agent, extended PPy colloids based on nanotubes and nanorods are produced instead. The films deposited from colloids of PPy nanotubes/nanorods had conductivity two orders of magnitude higher than those cast from colloid of ordinary PPy nanoglobules. Dynamic light scattering measurement demonstrated that PPy nanotubes/nanorods have average particles sizes around 500 nm with a dispersity index about 0.3. Moreover, the extended PPy nanostructured colloid exhibited improved electrochemical activity. Non-spherical PPy colloids are thus attractive candidates for conducting inks for printing of transparent conducting layers used as flexible sensors or electrodes.

Figure 1. Transmission electron micrographs of PPy colloids and nanotubular PPy colloid coated on flexible poly(ethylene terephthalate) foil.

Acknowledgement: The financial support of the Czech Science Foundation (14-05568P) is gratefully acknowledged.

References

- [1] N. V. Blinova, J. Stejskal, M. Trchová, J. Prokeš and M. Omastová, *European Polymer Journal*, 2007, **43**, 2331.
- [2] J. Škodová , D. Kopecký , M. Vrňata, M. Varga, J. Prokeš, M. Cieslar, P. Bober, and J. Stejskal, *Polymer Chemistry*, 2013, **4**, 3610.
- [3] M. Omastová, P. Bober, Z. Morávková, N. Peřinka, M. Kaplanová, T. Syrový, J. Hromádková, M. Trchová and J. Stejskal, *Electrochimica Acta*, 2014, **122**, 296.